

BRANZ Type Test

FH14268-01-1

CONE CALORIMETER TEST AND NZBC ACCEPTABLE SOLUTION C/AS1 EXTERIOR SURFACE FINISH PERFORMANCE OF EPS SUBSTRATE

CLIENT

Rockcote Resene Ltd T/A Resene Construction Systems 5 Venture Place, Middleton, Christchurch, 8024 New Zealand

All tests and procedures reported herein, unless indicated, have been performed in accordance with the laboratory's scope of accreditation

EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

TEST SUMMARY

Objective

To conduct cone calorimeter testing and reduce the data in accordance with ISO 5660 (2002) as specified in New Zealand Building Code (NZBC) Acceptable Solutions C/AS1 Appendix C C7.1 on client supplied specimens for the purposes of determination of performance in accordance with:

• NZBC Acceptable Solutions C/AS1 Section 5.4 Exterior Surface Finishes

Test sponsor

Rockcote Resene 5 Venture Place, Middleton, Christchurch, 8024 New Zealand

Description of test specimens

The product as described by the client as EPS Substrate with Resene Lumbersider or Resene X200 painted finish.

Date of tests

12 November 2021 and 22 March 2022

Test results

For the purposes of compliance with the relevant building code documents, the following classification is considered applicable to the tested samples as described in Section 1.

Building Code Document	Criteria	Result	Performance
NZPC Acceptable Solution C/AS1	Peak Heat Release rate (kW/m ²)	92.3	≤100 kW/m²
NZBC Acceptable Solution C/AS1	Total Heat Release (MJ/m ²)	30	≤ 50 MJ/m²

LIMITATION

The results reported here relate only to the item/s tested.

TERMS AND CONDITIONS

This report is issued in accordance with the Terms and Conditions as detailed and agreed in the BRANZ Services Agreement for this work.

CONTENTS

SIG	NATORI	ES
DOC	UMENT	REVISION STATUS
1.	GEN	ERAL
	1.1	Sample measurements
2.	EXPE	ERIMENTAL PROCEDURE
	2.1	Test standard6
	2.2	Test date6
	2.3	Specimen conditioning6
	2.4	Special weathering6
	2.5	Specimen wrapping and preparation6
	2.6	Test programme6
	2.7	Specimen selection6
3.	TEST	RESULTS AND REDUCED DATA7
	3.1	Test results and reduced data in accordance with NZBC Acceptable Solution C/AS1 Appendix C7.17
4.	SUM	MARY
5.		JLTS FOR NZBC ACCEPTABLE SOLUTION C/AS1 EXTERIOR FACE FINISHES9
6.	NZB	C CONCLUSION

FIGURES

Figure 1: Representative specimens (EPS with X200 left, and Lumbersider right)	5
Figure 2: Rate of heat release versus time	8

TABLES

Table 1: Physical parameters	. 5
Table 2: Test results and reduced data for EPS Substrate with X200	. 7
Table 3: Heat release rate	. 8
Table 4: Report summary	. 8
Table 5: NZBC Acceptable Solution C/AS1 Table 5.1	. 9
Table 6: NZBC Classification of external wall claddings	. 9

	REPORT NUMBER:	ISSUE DATE:	REVIEW/EXPIRY DATE	PAGE:	
BRANZ	FH14268-01-1	15 June 2022	15 June 2027	3 of 9	
	THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.				

SIGNATORIES

Author

L. F. Hersche Fire Testing Engineer IANZ Approved Signatory

Reviewer

E. Soja Senior Fire Safety Engineer IANZ Approved Signatory

DOCUMENT REVISION STATUS

ISSUE NO.	DATE ISSUED	EXPIRY DATE	DESCRIPTION
1	15/06/2022	15/06/2027	Initial Issue

1. GENERAL

The product submitted by the client for testing was identified by the client as EPS Substrate in Resene Lumbersider or Resene X200 painted finish. The nominally 50 mm thick panel system is comprised of an expanded polystyrene foam (EPS) substrate with multi-layered render finish of mineral base coat, mineral texture, Resene Limelock, and Resene Lumbersider or X200 painted finish. Figure 1 illustrates representative specimens of that tested.

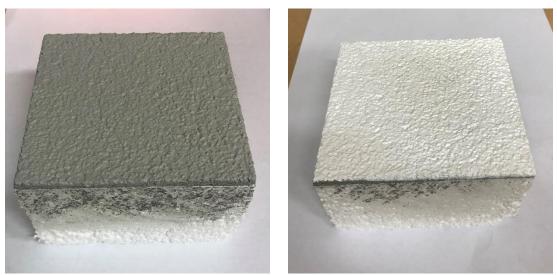


Figure 1: Representative specimens (EPS with X200 left, and Lumbersider right)

1.1 Sample measurements

The following physical parameters were measured for each specimen prior to testing.

Specimen ID	Initial properties		Overall	Colour	
	Mass (g)	Mean thickness* (mm)	apparent density (kg/m³)		
FH12468-2-50-1	86.9	40.0	217	Grey	
FH14268-2-50-2	77.0	39.5	195	Grey	
FH14268-2-50-3	84.2	40.2	209	Grey	
FH14268-1-50-1	80.6	40.0	202	White	

Table 1: Physical parameters

Shaded rows - indicative test specimen only

* Thickness reduced by cutting away the unexposed face

	REPORT NUMBER:	ISSUE DATE:	REVIEW/EXPIRY DATE	PAGE:	
BRANZ	FH14268-01-1	15 June 2022	15 June 2027	5 of 9	
	THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.				

2. EXPERIMENTAL PROCEDURE

2.1 Test standard

The tests were carried out and data reduced according to the test procedures described in ISO 5660: (2002), Reaction-to-fire tests – Heat release, smoke production and mass loss – Part 1: Heat release rate. The sample preparation and test procedure are as described in 2.4 and 2.5.

2.2 Test date

The tests were conducted on the 12 November 2021 and 22 March 2022 by Mr James Quilter and Mr James Stallinger respectively, at BRANZ Limited laboratories, Judgeford, New Zealand.

2.3 Specimen conditioning

All specimens were conditioned to moisture equilibrium (constant weight), at a temperature of 23 \pm 2°C and a relative humidity of 50 \pm 5% immediately prior to testing.

2.4 Special weathering

According to Acceptable Solutions Appendix C C7.1.3, timber claddings which have a fireretardant treatment incorporated in or applied to them are required to be subjected to the regime of accelerated weathering described in ASTM D 2898 Method B with the water flow rate from Method A before testing. The tested specimens were not timber claddings and therefore were not subjected to the accelerated weathering.

2.5 Specimen wrapping and preparation

All tests were conducted, and the specimens prepared in accordance with the test standard. The spark igniter and the stainless-steel retainer frame were used during testing. All specimens were wrapped in a single layer of aluminium foil, covering the unexposed surfaces.

Samples as supplied by the client were greater than 50 mm thick. In accordance with the standard, the requisite specimens were obtained by cutting away the unexposed face to reduce the thickness.

2.6 Test programme

The test programme consisted of three replicate specimens and one indicative specimens, as identified in the Table 1, tested at an irradiance level of 50 kW/m². All tests were carried out with the specimen horizontal, and with a nominal duct flow rate of 0.024 m^3 /s.

2.7 Specimen selection

BRANZ was not involved in the selection of the materials submitted for testing. The test materials used were supplied to the laboratory by the client.

	REPORT NUMBER:	ISSUE DATE:	REVIEW/EXPIRY DATE	PAGE:
BRANZ	FH14268-01-1	15 June 2022	15 June 2027	6 of 9
	THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.			

3. TEST RESULTS AND REDUCED DATA

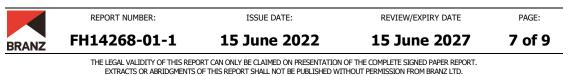
3.1 Test results and reduced data in accordance with NZBC Acceptable Solution C/AS1 Appendix C7.1

Table 2: Test results and reduced data for EPS Substrate with X200

Material		Test specin	Test specimens as described in Section 1		Mean
Specimen test number		FH12468-2-50-1	FH14268-2-50-2	FH14268-2-50-3	
Test Date		12/11/2021	22/03/2022	22/03/2022	
Time to sustained flaming	S	54	47	50	50
Observations ^a		-	-	-	
Test duration ^b	S	900	900	900	900
Mass remaining, m _f	g	76.0	62.3	72.1	70.1
Mass pyrolyzed	%	12.6%	19.1%	14.4%	15.3%
Specimen mass loss ^c	kg/m ²	1.1	1.6	1.3	1.3
Specimen mass loss rate ^c	g/m² .s	1.3	1.9	1.5	1.6
Heat release rate					
peak, \dot{q}''_{\max}	kW/m ²	73.4	119.0	84.4	92.3
average, \dot{q}''_{avg}					
Over 60 s from ignition	kW/m ²	36.6	48.8	47.7	44.4
Over 180 s from ignition	kW/m ²	35.7	41.4	28.9	35.3
Over 300 s from ignition	kW/m ²	38.1	67.1	27.1	44.1
Total heat released	MJ/m ²	23.8	37.7	28.4	30.0
Average Specific Extinction Area	m²/kg	169.4	526.1	223.3	306.3
Effective heat of combustion ^d , $\Delta h_{c,e\!f\!f}$	MJ/kg	19.2	22.7	20.7	20.9

Notes:

^a no significant observations were recorded


^b determined by test duration of 15 minutes (900 sec) as specified in NZBC Acceptable Solutions C/AS1 Appendix C C7.1.2

^c from ignition to end of test

^d from the start of the test

⁺ value calculated using data beyond the official end of test time according to the test standard.

NR not recorded

4. SUMMARY

The test standard requires that the mean heat release rate (HRR) readings over the first 180 s from ignition for the three specimens should differ by no more than 10% of the arithmetic mean of the three readings. In the event of this criterion not being met, a further three specimens are required to be tested.

Table 3: Heat release rate	Table	3:	Heat	release	rate
----------------------------	-------	----	------	---------	------

Specimen ID	Average HRR over 180 s from ignition	Arithmetic mean	% difference from the arithmetic mean
FH12468-2-50-1	35.7		0.9%
FH14268-2-50-2	41.4	35.3	17.2%
FH14268-2-50-3	28.9		-18.1%

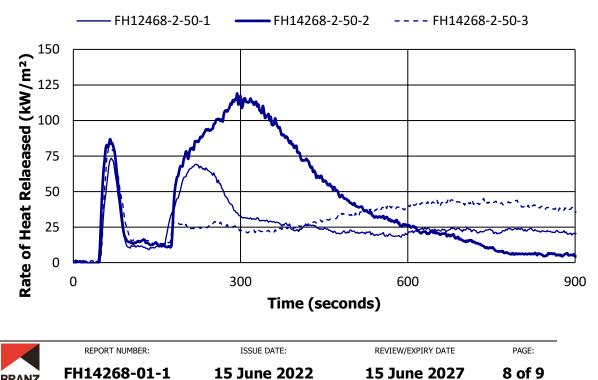

Table 3 identifies two specimens exposed to 50 kW/m² irradiance exceeded the acceptance criteria. Although outside of the variability criteria of the test standard, a further set of three tests as required by the test standard was deemed not to be necessary and would not be expected to lead to an alteration of the classification.

Table 4: Report summary

BRANZ

Mean Specimen thickness (mm)	Irradiance (kW/m²)	Mean Time to Ignition (s)	Mean Peak Heat Release Rate (kW/m²)	Mean Total Heat Released (MJ/m²)
39.9	50	50	92.3	30.0

Figure 2: Rate of heat release versus time

15 June 2022 15 June 2027 THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

5. RESULTS FOR NZBC ACCEPTABLE SOLUTION C/AS1 EXTERIOR SURFACE FINISHES

In accordance with NZBC Acceptable Solution C/AS1 Table 5.1 for external wall claddings the mean test results must not exceed the Peak Heat Release rate and Total Heat Release shown in Table 5.

Table 5: NZBC Acceptable Solution C/AS1 Table 5.1

	NZBC Acceptable Solution Requirement	
	Column B	Column D
Peak Heat Release rate (kW/m ²)	≤100	≤ 150
Total Heat Release (MJ/m ²)	≤ 25	≤ 50

The samples as described in Section 1 had the following results when reduced over the 15-minute (900 s) period as specified in Appendix C C7.1.2 as shown in Table 6.

Table 6: NZBC Classification of external wall claddings

	Sample 1	Sample 2	Sample 3	Mean
Peak Heat Release rate (kW/m ²)	73.4	119.0	84.4	92.3
Total Heat Release (MJ/m ²)	23.8	37.7	28.4	30.0

The tested samples recorded a mean Peak Heat Release of 92.3 KW/m² and a mean Total Heat Release of 30.0 MJ/m² and it is therefore considered to satisfy the requirements of NZBC Acceptable Solutions C/AS1 Table 5.1 Requirements for external wall claddings, Column D.

6. NZBC CONCLUSION

For the purposes of compliance with the relevant building code documents, the following performance is considered applicable to the tested sample as described in Section 1.

Building Code Document	Criteria	Performance
NZBC Acceptable Solution C/AS1	Peak Heat Release rate (kW/m²)	≤100 kW/m²
	Total Heat Release (MJ/m ²)	≤ 50 MJ/m²

	REPORT NUMBER:	ISSUE DATE:	REVIEW/EXPIRY DATE	PAGE:
BRANZ	FH14268-01-1	15 June 2022	15 June 2027	9 of 9
THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT.				

EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

FH14268-01-1-C1 NZBC CLASSIFICATION

This is to certify that the specimen described below was tested by BRANZ in accordance with ISO 5660-1:2002

Test Sponsor

Rockcote Resene 5 Venture Place, Middleton, Christchurch, 8024 New Zealand

Date of tests

12 November 2021 and 22 March 2022

Reference BRANZ Test Report

FH14268-01-1 - issued 15 June 2022

Test specimens as described by the client

EPS Substrate in Resene Lumbersider or Resene X200 painted finish.

A nominally 50 mm thick façade system comprised of an expanded polystyrene foam (EPS) substrate with multi-layered render finish of mineral base coat, mineral texture, Resene Limelock, and Resene Lumbersider or X200 painted finish.

	Mean values			
Specimen name/ID	Mass (g)	Thickness (mm)	Apparent Density (kg/m³)	Colour
FH14268-1-50-1	80.6	40.0*	202	White
FH14268-2-50-1/2/3	82.7	39.9*	207	Grey

* Specimen thickness reduced prior to test

Classification in accordance with the New Zealand Building Code

Calculations were carried out according to NZBC Acceptable Solutions C/AS1 Appendix C7.1. The performance for the sample as described above is given in the table below.

Building Code Document	Criteria	Performance
NZPC Acceptable Colution C/AC1	Peak Heat Release rate (kW/m ²)	≤100 kW/m²
NZBC Acceptable Solution C/AS1	Total Heat Release (MJ/m ²)	≤ 50 MJ/m²

Issued by

L. F. Hersche Fire Testing Engineer IANZ Approved Signatory

> Issue Date 15 June 2022

Reviewed by

E. Soja Senior Fire Safety Engineer IANZ Approved Signatory

Expiry Date 15 June 2027

Regulatory authorities are advised to examine test reports before approving any product. All tests and procedures reported herein, unless indicated, have been performed in accordance with the laboratory's scope of accreditation.